

Onset of Nucleate Boiling due to Rapid Heating –

How does it relate to Combustion?

Tali Bar-Kohany^{1,2}

¹ School of Mechanical Engineering, Tel Aviv University, Israel

² Nuclear Research Center of the Negev, Israel

Research Aim

Predicting the nucleation temperature due to

an isobaric process under moderate to high

heating rates for different liquids.

Outline

Aim & Motivation Phase-Change Thermodynamics Rapid Isobaric heating Model

>Results

>Conclusions

Intertwining Boiling & Combustion Promotion

Intertwining Boiling & Combustion Suppression

How Water Mist Fire Fighting Works

- Evaporation (Heat extraction) is a function of the surface area of the droplets
- // Reducing droplet size increases the surface area
- // Increasing the surface area allows for larger cooling effect for a given flow

- // Water converts to vapour, expanding by a factor of 1650
- // Oxygen is displaced and diluted thereby blocking it from the fuel source
- // Higher heat levels cause faster vaporisation

- // Fire extinguishment is improved with direct contact of water droplets
- // This type of extinguishment is normally associated with standard sprinklers

- // Small droplets tend to remain suspended
- The expanding mist will expand and cool the gasses and other fuelin the area
- II Blocks the transfer of radiant heat to the adjacent combustibles and pre-wets the

https://www.slideshare.net/sa

Drop impact - Isothermal flat, dry surfaces

6

Fuel-drop impact onto - heated, dry surfaces

Metastable liquids

 $\int_{0}^{\tau_{m}[T(t)]} J[T(t)]dt < 1$

Metastability denotes the phenomenon when a system spends an extended time in a configuration other than the system's state of least energy

So, if given an *initial pressure* & a *heating rate*,

could you **predict** the *nucleation temperature*?

Nucleation Pathways Rapid Isobaric heating (p=1 atm)

10

Nucleation Pathways Rapid Isobaric heating (p=1 atm)

Classic Thermodynamic potentials – Gibbs no.

$$\frac{G_{b}}{\Phi} \equiv \frac{W_{c}}{k_{B}T} = \frac{16\pi\sigma^{3}}{3k_{B}T(P_{L} - P_{v,e})^{2}}$$

$$\Rightarrow \Delta P_{\rm n} = P_L - P_{v,e} = \sqrt{\frac{1}{\frac{G_b}{\Phi}} \frac{16\pi\sigma^3}{3k_{\rm B}T\left(1 - \frac{\rho_{\rm v}}{\rho_{\rm L}}\right)}}$$

Dynamic Thermodynamics

Bartak (IJMF, 1990), rapid depressurization

$$\frac{\mathbf{G}_b}{\mathbf{\phi}} \equiv \widetilde{f}_1(p_0, T_0) \widetilde{f}_2(\dot{T}) \widetilde{f}_3(\Sigma)$$

$$\Rightarrow \Delta P_{n} = P_{L} - P_{v,e} = \sqrt{\frac{1}{\tilde{f}_{1}(p_{0}, T_{0})\tilde{f}_{2}(\dot{T})\tilde{f}_{3}(\Sigma)} \frac{16\pi\sigma^{3}}{3k_{B}T\left(1 - \frac{\rho_{v}}{\rho_{L}}\right)}}$$
$$\tilde{f}_{3} \rightarrow 1 \text{ (isobaric process)}$$

Clausius-Clapeyron

$$\frac{P_L - P_{v,e}}{T_n - T_L} = \frac{\Delta P_n}{\Delta T_n} \approx \frac{h_{fg}}{T_s \Delta v}$$

$$\Delta T_{S (PS(T_0))}$$

$$\Delta T_n = T_n - T_L = \frac{\Delta P_n T_s (v_v - v_L)}{h_{fg}} = \frac{f_1(P_0)}{f_2(t)} \frac{f_2(t)}{h_{fg}} \frac{v_v}{h_{fg}} \sqrt{\frac{16\pi\sigma^3 T_s}{3k_b}}$$

$$f_j = \sqrt{\frac{1}{\tilde{f_j}}}$$
13

Thermodynamic model - $f_2(\dot{T})$

 $T\uparrow \Rightarrow J\uparrow$; Local heterophase fluctuations produce short-range order heterogeneity $\Rightarrow \dot{T}$ depends on the temporal evolution of the temperature.

Bar-Kohany T. and Amsalem Y., Int. J. Heat Mass Transf., 2018

Thermodynamic model - f_1

Bar-Kohany T. and Amsalem Y., Int. J. Heat Mass Transf., 2018

Correlation vs. Experimental results - Water

16

Universal correlation vs. Experimental results

Ja _{HN}	Liquid	С	polar
626	Water	0.370	Y
196	Methanol	0.135	Y
206	Ethanol	0.170	Ν
136	Heptane	0.093	Y
236	Toluene	0.205	Ν

Universal Correlation - Pre factor C

			0.4		
Liquid	Pre factor C	C	0.4 0.35 0.3	$C = 0.2 \ln(Ja_{HN}) - 0.9$	
Water	0.379	ctor	0.25 0.2 0.15 0.1		
Methanol	0.136	e fa(FC 72	
Ethanol	0.169	P_{Γ}			
Heptane	0.088		0.05		
Toluene	0.200		0	200 4	00 600
		Ja _{HN}			
		• Water		eter • Methan	ol • Heptane
			• E	nanol • Toluene	correlation

Take home points

- A simple, universal correlation was developed to predict the T_{ONB} due to **rapid** isobaric process, as a function of the heating rate (\dot{T}) . $\Delta T_n = C T_s \dot{T}^{\frac{10}{Ja_{HN}}}$
- The input required is simply the *saturation* & *HN* conditions.
- The analysis considered **classical thermodynamic potentials** *(Gb, Ja)* and modified them to include **dynamic effects**.

• This correlation can be used in CFD codes

Future work

- Expanding the experimental data base:
 - Intermediate heating rates.
 - Different pressure values.
 - ➢ Different fluids. (C(Ja))
 - ➢ Flow boiling

- Formulation of a unifying model to predict slow \rightarrow intermediate \rightarrow fast processes.
- Same for rapid depressurization.

The 33th Annual symposium of the Israeli section of the combustion institute.

Any Questions ?

Yarden Amsalem

Wish to acknowledge the support of CHE-IAEC research grant by the PAZY Foundation.

Fuel-drop impact onto heated, dry surfaces

Visentini, Coiln & Ruyer, Exp.Thermal.Fluid.Sci. (2014)

Experimental Methods - Pulse Heating

Y. Iida, K. Okuyama, K. Sakurai, Int. J. Heat Mass Transf. 1994

Experimental results Inflection Point Temperature (°C) **Nucleation Temperature** Heating Rate = 44*10 K/s = 287 °C т Time (µs)

Glod .S., ;.D., Zhao .Z., Yadigaroglu .G, Int. J. Heat Mass Transf. 2002.

Universal Correlation - Factor c

Universal Correlation - Pre factor C

Universal Correlation - Pre factor C

Reference	C pre factor	Liquid
K. Okuyama 1994	0.385	
Thomas Avedisian 2014 BSE	0.373	
Thomas Avedisian 2014 NBSE	0.384	Water
S. Glod a, D. Poulikakos 2002	0.381	
Average value with tolerance	0.379±0.006	

Methanol

----- Correlation (c=10, C=0.135)

